Quantitative Analysis of Land Subsidence and Its Effect on Vegetation in Xishan Coalfield of Shanxi Province

Author:

Ma Ding,Zhao ShangminORCID

Abstract

It is of great significance for the monitoring and protection of the original ecological environment in coal mining areas to identify the ground subsidence and quantify its influence on the surface vegetation. The surface deformation and vegetation information were obtained by using spaceborne SAR and Landsat OLI images in the Xishan Coalfield. The relative change rate, coefficient of variation, and trend analysis methods were used to compare the vegetation growth trends in the subsidence center, subsidence edge, and non-subsidence zones; and the vegetation coverage was predicted by the pixel dichotomy and grey model from 2021 to 2025. The results indicated that the proportions of vegetation with high fluctuation and serious degradation were 6.60% and 5.64% in the subsidence center, and its NDVI values were about 10% lower than that in the subsidence edge and non-subsidence zones. In addition, vegetation coverage showed a wedge ascending trend from 2013 to 2020, and the prediction values of vegetation coverage obtained by GM (1,1) model also revealed this trend. The residuals of the predicted values were 0.047, 0.047, and 0.019 compared with the vegetation coverage in 2021, and the vegetation coverage was the lowest in the subsidence center, which was consistent with the law obtained by using NDVI. Research suggested that ground subsidence caused by mining activities had a certain impact on the surface vegetation in the mining areas; the closer to the subsidence center, the greater the fluctuation of NDVI, and the stronger the vegetation degradation trend; conversely, the smaller the fluctuation, and the more stable the vegetation growth.

Funder

the National Key Research and Development Program

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3