A Fine-Grain Batching-Based Task Allocation Algorithm for Spatial Crowdsourcing

Author:

Jiao YuxinORCID,Lin Zhikun,Yu Long,Wu XiaozhuORCID

Abstract

Task allocation is a critical issue of spatial crowdsourcing. Although the batching strategy performs better than the real-time matching mode, it still has the following two drawbacks: (1) Because the granularity of the batch size set obtained by batching is too coarse, it will result in poor matching accuracy. However, roughly designing the batch size for all possible delays will result in a large computational overhead. (2) Ignoring non-stationary factors will lead to a change in optimal batch size that cannot be found as soon as possible. Therefore, this paper proposes a fine-grained, batching-based task allocation algorithm (FGBTA), considering non-stationary setting. In the batch method, the algorithm first uses variable step size to allow for fine-grained exploration within the predicted value given by the multi-armed bandit (MAB) algorithm and uses the results of pseudo-matching to calculate the batch utility. Then, the batch size with higher utility is selected, and the exact maximum weight matching algorithm is used to obtain the allocation result within the batch. In order to cope with the non-stationary changes, we use the sliding window (SW) method to retain the latest batch utility and discard the historical information that is too far away, so as to finally achieve refined batching and adapt to temporal changes. In addition, we also take into account the benefits of requesters, workers, and the platform. Experiments on real data and synthetic data show that this method can accomplish the task assignment of spatial crowdsourcing effectively and can adapt to the non-stationary setting as soon as possible. This paper mainly focuses on the spatial crowdsourcing task of ride-hailing.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3