Water Temperature Simulation in a Tropical Lake in South China

Author:

Gu Hongbin,Lu BaohongORCID,Qi Changjun,Xiong Si,Shen Wenlong,Ma Lejun

Abstract

To study the vertical water temperature structure and thermodynamic characteristics of tropical lake-like reservoirs, a water temperature model was developed by a vertical one-dimensional numerical model for Songtao Reservoir in Hainan Province, China. The model was verified by the measured water temperature data, and sensitivity analysis of key model parameters was carried out. The results show that water temperature simulated by the model in Songtao Reservoir agreed with the observations quite well, and the model is feasible for water temperature simulations in large reservoirs in tropical zones. The sensitivity of vertical water temperature structure to different model parameters varied. For example, the extinction coefficient greatly affected surface water temperature, which is important for the formation and development of the surface water temperature hybrid layer. The vertical mixing coefficient significantly influenced the inflection point position and thickness of the thermocline. The vertical water temperature structure in Songtao Reservoir was stratified. Reservoir surface water temperature varied from 19.4 °C to 33.8 °C throughout a year. The hypolimnion mainly appeared in elevation below 150 m, where the water temperature is basically maintained at 19 °C throughout the year. This study also found that the surface water temperature of Songtao Reservoir in the tropical zone was higher than the air temperature throughout a year, with an annual average of 3.5 °C higher than that of air temperature. The preliminary analysis found out that the higher surface water temperature may be caused by the strong air temperature and solar radiation in tropical zones, in addition to the enhanced capacity of heat absorption and heat storage due to the slow water flow in the reservoir.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3