Author:
Zhang Han,Li Gengfeng,Yuan Hanjie
Abstract
After disasters, enhancing the resilience of power systems and restoring power systems rapidly can effectively reduce the economy damage and bad social impacts. Reasonable post-disaster restoration strategies are the most critical part of power system restoration work. This paper co-optimizes post-disaster damage repair and power system operation together to formulate the optimal repair route, the unit output and transmission switching plan. The power outage loss will be minimized, with possible small expense of damage repair and power system operation cost. The co-optimization model is formulated as a mixed integer second order cone program (MISOCP), while the AC-power-flow model, the complex power system restoration constraints and the changing processes of component available states are synthetically considered to make the model more realistic. Lagrange relaxation (LR) decomposes the model into the damage repair routing sub problem and the power system operation sub problem, which can be solved iteratively. An acceleration strategy is used to improve the solving efficiency. The proposed model and algorithm are validated by the IEEE 57-bus test system and the results indicate that the proposed model can realize the enhancement of resilience and the economic restoration of post-disaster power systems.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献