Multifield Calculation and Analysis of Excitation Winding Interturn Short Circuit Fault in Turbo-Generator

Author:

Ma MinghanORCID,Li Yonggang,Wu Yucai,Dong Chenchen

Abstract

Excitation winding interturn short circuit (EWISC) is a common fault in turbo-generators. Once the fault occurs, if not handled in time, it will result in significant security risks to the power system. Using the multifield characteristics of fault generators for a comprehensive diagnosis can make the diagnostic results more accurate and credible. In this paper, taking a TA-1100-78 type, two pole pairs turbo-generator as the research object, the two-dimensional finite element electromagnetic model of stator/rotor and the three-dimensional finite element heat transfer model of rotor were established. The electromagnetic field, temperature field, and stress field of the generator were simulated and analyzed. At the same time, the air gap magnetic field, three-dimensional temperature field, and stress field distribution of the rotor were calculated for EWISC faults in different fault degrees and positions. The results showed that the EWISC fault weakened the air gap magnetic field and caused unbalanced electromagnetic distribution. At the same time, it caused a distortion of the rotor temperature field, resulting in an unbalanced distribution of the temperature field. The stress field was affected by the distortion of temperature field, and the local thermal stress increased but did not exceed the yield limit of the material. Restorable elastic deformation occurred when the rotor was heated, which caused the thermal bending of the rotor. The method adopted in this paper can provide a reference for the calculation of multiphysical field after a generator fault. It is also pointed out that the thermal unbalance influence should not be neglected in the study of generator vibration characteristics.

Funder

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3