Cost-Energy Optimum Pathway for the UK Food Manufacturing Industry to Meet the UK National Emission Targets

Author:

Gowreesunker Baboo,Tassou SavvasORCID,Atuonwu James

Abstract

This paper investigates and outlines a cost-energy optimised pathway for the UK food manufacturing industry to attain the national Greenhouse Gas (GHG) emission reduction target of 80%, relative to 1990 levels, by 2050. The paper employs the linear programming platform TIMES, and it models the current and future technology mix of the UK food manufacturing industry. The model considers parameters such as capital costs, operating costs, efficiency and the lifetime of technologies to determine the cheapest pathway to achieve the GHG emission constraints. The model also enables future parametric analyses and can predict the influence of different economic, trade and dietary preferences and the impact of technological investments and policies on emissions. The study showed that for the food manufacturing industry to meet the emission reduction targets by 2050 the use of natural gas as the dominant source of energy in the industry at present, will have to be replaced by decarbonised grid electricity and biogas. This will require investments in Anaerobic Digestion (AD), Combined Heat and Power (CHP) plants driven by biogas and heat pumps powered by decarbonised electricity.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference45 articles.

1. World Population Projected to Reach 9.7 Billion by 2050http://www.un.org/en/development/desa/news/population/2015-report.html

2. BP Statistical Review of World Energy, 67th Edition, June 2018https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf

3. BP Energy Outlook, 2018 Editionhttps://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3