Resonant Pulsing Frequency Effect for Much Smaller Bubble Formation with Fluidic Oscillation

Author:

Desai Pratik,Hines Michael,Riaz Yassir,Zimmerman WilliamORCID

Abstract

Microbubbles have several applications in gas-liquid contacting operations. Conventional production of microbubbles is energetically unfavourable since surface energy required to generate the bubbles is inversely proportional to the size of the bubble generated. Fluidic oscillators have demonstrated a size decrease for a system with high throughput and low energetics but the achievable bubble size is limited due to coalescence. The hypothesis of this paper is that this limitation can be overcome by modifying bubble formation dynamics mediated by oscillatory flow. Frequency and amplitude are two easily controlled factors in oscillatory flow. The bubble can be formed at the displacement phase of the frequency cycle if the amplitude is sufficient to detach the bubble. If the frequency is too low, the conventional steady flow detachment mechanism occurs instead; if the frequency is too high, the bubbles coalesce. Our hypothesis proposes the existence of a resonant mode or ‘sweet-spot’ condition, via frequency modulation and increase in amplitude, to reduce coalescence and produce smallest bubble size with no additional energy input. This condition is identified for an exemplar system showing relative size changes, and a bubble size reduction from 650 µm for steady flow, to 120 µm for oscillatory-flow, and 60 µm for resonant condition (volume average) and 250 µm for steady-flow, 15 µm for oscillatory-flow, 7 µm for the resonant condition. A 10-fold reduction in bubble size with minimal increase in associated energetics results in a substantial reduction in energy requirements for all processes involving gas-liquid operations. The reduction in the energetic footprint of this method has widespread ramifications in all gas-liquid contacting operations including but not limited to wastewater aeration, desalination, flotation separation operations, and other operations.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference53 articles.

1. Transport Phenomena;Bird,2007

2. Fundamentals of Heat and Mass Transfer;Incropera,2007

3. Perry’s Chemical Engineers’ Handbook;Green,2007

4. Mass-Transfer Operations;Treybal,1980

5. What can be done with microbubbles generated by a fluidic oscillator? (survey)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3