GIS-Based Modeling for Vegetated Land Fire Prediction in Qaradagh Area, Kurdistan Region, Iraq

Author:

Salar Sarkawt G.ORCID,Othman Arsalan AhmedORCID,Rasooli Sabri,Ali Salahalddin S.,Al-Attar Zaid T.,Liesenberg VeraldoORCID

Abstract

This study aims to estimate the susceptibility of fire occurrence in the Qaradagh area of the Iraqi Kurdistan Region, by examining 16 predictive factors. We selected these predictive factors, dependent on analyzing and performing a comprehensive review of about 57 papers related to fire susceptibility. These papers investigate areas with similar environmental conditions to the arid environments as our study area. The 16 factors affecting the fire occurrence are Normalized Difference Vegetation Index (NDVI), slope gradient, slope aspect, elevation, Topographic Wetness Index (TWI), Topographic Position Index (TPI), distance to roads, distance to rivers, distance to villages, distance to farmland, geology, wind speed, relative humidity, annual temperature, annual precipitation, and Land Use and Land Cover (LULC). To extract fires that occurred between 2015 and 2020, 121 scenes of satellite images (most of them are scenes of Sentinel-2) were used, with the aid of a field survey. In total, 80% of the data (185,394 pixels) were used for the training dataset in the model, and 20% of the data (46,348 pixels) were used for the validation dataset. Conversely, 20% of these data were used for the training dataset in the model, and 80% of the data were used for the validation dataset to check the model’s overfitting. We used the logistic regression model to analyze the multi-data sites obtained from the 16 predictive factors, to predict the forest and vegetated lands that suffer from fire. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to evaluate the accuracy of the proposed models. The AUC value is more than 84.85% in all groups, which shows very high accuracy for both the model and the factors selected for preparing fire zoning maps in the studied area. According to the factor weight results, classes of LULC and wind speed gained the highest weight among all groups. This paper emphasizes that the used approach is useful for monitoring shrubland, grassland, and cropland fires in other similar areas, which are located in the Mediterranean climate zone. Besides, the model can be applied in other regions, taking the local influencing factors into consideration, which contribute to forest fire mitigation and prevention planning. Hence, the mentioned results can be applied to primary warning, fire suppression resource planning, and allocation work. The mentioned results can be used as prior warnings of the outbreak of fires, taking the necessary measures and methods to prevent and extinguish fires.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3