Recycling Potential Comparison of Mass Timber Constructions and Concrete Buildings: A Case Study in China

Author:

Sun Qiming,Huang Qiong,Duan Zhuocheng,Zhang AnxiaoORCID

Abstract

The recycling potential (RP) indicates the ability of building materials to form a closed-loop material flow, that is, the material efficiency during its whole life cycle. Mass timber constructions and concrete buildings vary widely in RP, but the differences are difficult to calculate. This paper proposed a level-based scheme to compare the RP of mass timber and concrete buildings, and a BIM-Eco2soft-MS Excel workflow coupling Material Cycle Database and digital design tools were established to obtain information on building materials, resource consumption, and environmental impact for the RP calculation. Taking a residential building as an example, the difference in RP between mass timber and concrete at the material-level is firstly discussed. Then at the component-level, the RP of the wood structure component and concrete component is compared, and the optimization methods are proposed. Finally, the difference in RP between the mass timber building and reinforced concrete building at the building-level are illustrated. The results show that the RP of mass timber building is higher, and the disassembly ability is better. Within a 100-year service life, the RP of mass timber buildings is 73% and that of the reinforced concrete building is 34%. The total amount of material consumption and waste of the Variant CLT is 837,030 kg and 267,237 kg respectively, which is less than one-third of that of concrete buildings (3,458,488 kg; 958,145 kg). The Global Warming potential (GWP) of these two variants is −174.0 kgCO2/m2 and 221.0 kgCO2/m2 separately, indicating that the Variant CLT can realize negative carbon emissions and gain ecological benefits. A sensitivity analysis is conducted to explore the potential impacts of certain parameters on GWP and RP of buildings. The research can provide the reference for material selection, component design, and RP optimization of mass timber buildings. In addition, new ideas for assessing the potential of circularity as a design tool are proposed to support the transition towards a circular construction industry and to realize carbon neutrality.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

1. Increased carbon footprint of materials production driven by rise in investments

2. Life cycle thinking for sustainable development in the building industry;Lei,2020

3. Design for disassembly—Themes and principles;Crowther;Environ. Des. Guide,2005

4. Recycling Potential and Design for Disassembly in Buildings;Thormark,2001

5. Cradle to Cradle: Remaking the Way We Make Things;McDonough,2002

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3