Abstract
Microplastics are considered the most common waste in aquatic ecosystems, and studying them along with their interactions with biota are considered a priority. Here, results on the role of microplastics in the dispersion of microbes from terrestrial to aquatic ecosystems are presented. Data were obtained from microcosm experiments in which microplastics (plastic bags (BA), polyethylene bottles (BO), acrylic beads (BE), and cigarette butts (BU)) with their attached natural bacterial communities were inoculated in filtered and autoclaved lake water. The bacterial abundance on microplastics was estimated before inoculation using a protocol for the enumeration of sediment bacteria and ranged between 1.63 (BA) and 203.92 (BE) × 103 cells mm−2. Bacteria were released in the new medium, and their growth rates reached 5.8 d−1. In the attached communities, Beta- (21.4%) and Alphaproteobacteria (18.6%) were the most abundant classes, while in the free-living communities Gammaproteobacteria dominated (48.07%). Abundant OTUs (≥1%) of the free-living communities were associated with the genera Acinetobacter, Pseudomonas, Ecidovorax, Delftia, Comamonas, Sphingopyxis, and Brevundimonas and members of the FCB group. Members of these genera are known to degrade natural or man-made organic compounds and have recently emerged as opportunistic pathogens. Thus, besides trophic transmission, microplastics can directly release bacteria in the environment, which could affect the health of humans, animals, and ecosystems.
Funder
University of Ioannina Research Committee
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献