Effect of Long-Term Adaptation to Cold and Short-Term Cooling on the Expression of the TRPM2 Ion Channel Gene in the Hypothalamus of Rats

Author:

Evtushenko Anna A.1ORCID,Voronova Irina P.1,Kozyreva Tamara V.1

Affiliation:

1. Department of Thermophysiology, Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia

Abstract

The present study is aimed to elucidate the possible involvement of the thermosensitive TRPM2 ion channel in changing of the temperature sensitivity of the hypothalamus after different cold exposures—long-term adaptation to cold and short-term cooling. Quantitative RT-PCR was used to study the expression of the gene of thermosensitive TRPM2 ion channel in the hypothalamus in the groups of control (kept for 5 weeks at +20 to +22 °C) and cold-adapted (5 weeks at +4 to +6 °C) rats, as well as in the groups of animals which were subjected to acute cooling (rapid or slow) with subsequent restoration of body temperature to the initial level. It has been shown that after long-term adaptation to cold, the decrease in the Trpm2 gene expression was observed in the hypothalamus, while a short-term cooling does not affect the expression of the gene of this ion channel. Thus, long-term adaptation to cold results in the decrease in the activity not only of the TRPV3 ion channel gene, as shown earlier, but also of the Trpm2 gene in the hypothalamus. The overlapping temperature ranges of the functioning of these ion channels and their unidirectional changes during the adaptation of the homoeothermic organism to cold suggest their functional interaction. The decrease in the Trpm2 gene expression may indicate the participation of this ion channel in adaptive changes in hypothalamic thermosensitivity, but only as a result of long-term cold exposure and not of a short-term cooling. These processes occurring at the genomic level are one of the molecular mechanisms of the adaptive changes.

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3