Efficient Arsenate Decontamination from Water Using MgO-Itsit Biochar Composite: An Equilibrium, Kinetics and Thermodynamic Study

Author:

Din Salah Ud,Hussain Babar,Haq SirajulORCID,Imran MuhammadORCID,Ahmad PervaizORCID,Khandaker Mayeen UddinORCID,Rehman Fazal Ur,Eldin Sayed M.ORCID,Mousa Abd Allah A.ORCID,Khan Ilyas,Emran Talha BinORCID

Abstract

(1) Background: In this investigation, a composite of MgO nanoparticles with Itsit biochar (MgO-IBC) has been used to remove arsenate from contaminated water. The reduced adsorption capacity of biochar (IBC), due to loss of functionalities under pyrolysis, is compensated for with the composite MgO-IBC. (2) Methods: Batch scale adsorption experiments were conducted by using MgO-IBC as an adsorbent for the decontamination of arsenate from water. Functional groups, elemental composition, surface morphology, and crystallinity of the adsorbent were investigated by using FTIR, EDX, SEM and XRD techniques. The effect of pH on arsenate adsorption by MgO-IBC was evaluated in the pH range of 2 to 8, whereas the temperature effect was investigated in the range of 303 K to 323 K. (3) Results: Both pH and temperature were found to significantly influence the overall adsorption efficiency of MgO-IBC for arsenate adsorption with lower pH and higher temperature being suitable for higher arsenate adsorption. A kinetics study of arsenate adsorption confirmed an equilibrium time of 240 min and a pseudo-second-order model well-explained the kinetic adsorption data, whereas the Langmuir model best fitted with the equilibrium arsenate adsorption data. The spontaneity and the chemisorptive nature of arsenate adsorption was confirmed by enthalpy, entropy, and activation energy. Comparison of adsorbents in the literature with the current study indicates that MgO-IBC composite has better adsorption capacity for arsenate adsorption than several previously explored adsorbents. (4) Conclusions: The higher adsorption capacity of MgO-IBC confirms its suitability and efficient utilization for the removal of arsenate from water.

Funder

Higher Education Commission of Pakistan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3