Abstract
Magnesium (Mg2+) is one of the most common impurities in calcite and is known to have a non-linear impact on the solubility of magnesian calcites. Using molecular dynamics (MD), we observed that Mg2+ impacts overall surface energies, local free energy profiles, interfacial water density, structure and dynamics and, at higher concentrations, it also causes crystal surface deformation. Low Mg concentrations did not alter the overall crystal structure, but stabilised Ca2+ locally and tended to increase the etch pit nucleation energy. As a result, Ca-extraction energies over a wide range of 39 kJ/mol were observed. Calcite surfaces with an island were less stable compared to flat surfaces, and the incorporation of Mg2+ destabilised the island surface further, increasing the surface energy and the calcium extraction energies. In general, Ca2+ is less stable in islands of high Mg2+ concentrations. The local variation in free energies depends on the amount and distance to nearest Mg in addition to local disruption of interfacial water and the flexibility of surface carbonate ions to rotate. The result is a complex interplay of these characteristics that cause variability in local dissolution energies. Taken together, these results illustrate molecular scale processes behind the non-linear impact of Mg2+ concentration on the solubility of magnesium-bearing calcites.
Funder
Horizon 2020
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献