Abstract
In this study, potassium ferrocyanide, a nontoxic cyanide precursor in dark and diffuse reflection environment, was applied as reagent for the leaching of gold. The free cyanide ions could gradually release from potassium ferrocyanide solution under the ultraviolet light. Orthogonal leaching experiments were performed in gold ore to analyze the effect of solution pH, potassium ferrocyanide dosage, and temperature in a potassium ferrocyanide solution system under UV light. Response surface methodology (RSM) was applied to explore the role of potassium ferrocyanide in gold leaching; optimized results showed that the gold recovery reached 67.74% in a high-alkaline environment at a 12.6 pH, 3.8 kg/t potassium ferrocyanide dosage, 62 °C, and irradiance of 10 mW·cm−2. The gold leaching kinetics were monitored by quartz crystal microbalance with dissipation (QCM-D) of potassium ferrocyanide solution. The results indicate that the gold extraction process could be divided into two stages: adsorption and leaching, and a rigid adsorption layer formed on the reaction surface. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis of the gold sensor surface after leaching reaction showed that –C≡N appears on the gold sensor surface, and the gold is oxidized to form AuCN complexes.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献