Stable Bromine Isotopic Composition of Coal Bed Methane (CBM) Produced Water, the Occurrence of Enriched 81Br, and Implications for Fluid Flow in the Midcontinent, USA

Author:

Stotler Randy L.ORCID,Kirk Matthew F.ORCID,Newell K. David,Goldstein Robert H.,Frape Shaun K.,Gwynne Rhys

Abstract

This study characterizes the δ37Cl, δ81Br, and 87Sr/86Sr of coal bed methane produced fluids from Pennsylvanian Cherokee Group coals of the Cherokee Basin in southeast Kansas, USA. The δ37Cl, δ81Br, and 87Sr/86Sr values range between −0.81 and +0.68‰ (SMOC), −0.63 and +3.17‰ (SMOB), and 0.70880 and 0.71109, respectively. A large percentage of samples have δ81Br above +2.00‰. Two fluid groups were identified on the basis of K/Br, Br/Cl, and Ca/Mg ratios, temperature, He content, δ2H, δ18O, δ81Br, and 87Sr/86Sr. Both fluid groups have geochemical similarities to fluids in Cambrian, Ordovician, and Mississippian units. Lower salinity and higher temperature fluids from deeper units are leaking up into the Cherokee Group and mixing with a higher salinity fluid with higher δ81Br and more radiogenic 87Sr/86Sr. Variation in δ37Cl indicates an unknown process other than mixing is affecting the salinity. This process does not appear to be related to evaporation, evaporite dissolution, or diffusion. Insufficient data are available to evaluate halide–gas or water–rock interaction, but halide–gas interactions are not likely a significant contributor to high δ81Br. Rather, interactions with organically bound bromine and soluble chloride within the coal could have the strongest effect on δ37Cl and δ81Br values.

Funder

American Chemical Society Petroleum Research Fund

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference108 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geochemistry of groundwater: Major and trace elements;Reference Module in Earth Systems and Environmental Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3