An Application of a Modified Gappy Proper Orthogonal Decomposition on Complexity Reduction of Allen-Cahn Equation

Author:

Dechanubeksa Chutipong,Chaturantabut SaifonORCID

Abstract

This work considers model reduction techniques that can substantially decrease computational cost in simulating parmetrized Allen–Cahn equation. We first employ the proper orthogonal decomposition (POD) approach to reduce the number of unknowns in the full-order discretized system. Since POD cannot reduce the computational complexity of nonlinearity in Allen–Cahn equation, we also apply discrete empirical interpolation method (DEIM) to approximate the nonlinear term for a substantial reduction in overall simulation time. However, in general, the POD-DEIM approach is less accurate than the POD approach, since it further approximates the nonlinear term. To increase the accuracy of the POD-DEIM approach, this work introduces an extension of the DEIM approximation based on the concept of Gappy POD (GPOD), which is optimal in the least-squares sense. The POD-GPOD approach is tested and compared with the POD and POD-DEIM approaches on Allen–Cahn equation for both cases of fixed parameter value and varying parameter values. The modified GPOD approximation introduced in this work is demonstrated to improve accuracy of DEIM without sacrificing too much efficiency on the computational speedup, e.g., in one of our numerical tests, the POD-GPOD approach provides an approximate solution to the parmetrized Allen–Cahn equation 200 times faster than the full-order system with average error of order O ( 10 − 4 ) . The POD-GPOD approach is therefore shown to be a promising technique that compromises between the accuracy of POD approach and the efficiency of POD-DEIM approach.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3