Abstract
A tumor is an abnormal tissue classified as either benign or malignant. A breast tumor is one of the most common tumors in women. Radiologists use mammograms to identify a breast tumor and classify it, which is a time-consuming process and prone to error due to the complexity of the tumor. In this study, we applied machine learning-based techniques to assist the radiologist in reading mammogram images and classifying the tumor in a very reasonable time interval. We extracted several features from the region of interest in the mammogram, which the radiologist manually annotated. These features are incorporated into a classification engine to train and build the proposed structure classification models. We used a dataset that was not previously seen in the model to evaluate the accuracy of the proposed system following the standard model evaluation schemes. Accordingly, this study found that various factors could affect the performance, which we avoided after experimenting all the possible ways. This study finally recommends using the optimized Support Vector Machine or Naïve Bayes, which produced 100% accuracy after integrating the feature selection and hyper-parameter optimization schemes.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference65 articles.
1. Cancerhttps://www.who.int/news-room/fact-sheets/detail/cancer
2. WHO|Breast Cancer,2021
3. Computed-aided diagnosis (CAD) in the detection of breast cancer
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献