Enhanced Surface Properties of the Al0.65CoCrFeNi High-Entropy Alloy via Laser Remelting

Author:

Miao Junwei1,Li Tianxin1,Li Qiang2,Chen Xiaohu3,Ren Zheng3,Lu Yiping1

Affiliation:

1. Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China

2. Jiangsu XCMG Construction Machinery Research Institute Co., Ltd., Xuzhou 221004, China

3. Ningbo Branch of China Ordnance Academy, Ningbo 315103, China

Abstract

The laser remelting technique was applied to the surface modification of the Al0.65CoCrFeNi high-entropy alloy (HEA) to further advance its mechanical potential. The microstructure of the remelted layer was refined from coarse dendritic to submicron-scale basket weave compared with the as-cast substrate, resulting in a 1.8-time increase in Vickers microhardness. The nanoindentation tests indicated that the nanohardness of the remelted layer was higher than that of each phase in the substrate. Meanwhile, the remelted layer retained considerable plasticity, as evidenced by its high Wp/Wt ratio (0.763) and strain hardening exponent (0.302). Additionally, adhesive wear prevailed on the substrate, while only abrasive wear features were observed on the remelted layer. Accordingly, the average friction coefficient and the wear rate of the remelted layer were minimized by 23% and 80%, respectively, compared with the substrate. Our findings explored an industrialized method to enhance the surface properties of the Al0.65CoCrFeNi HEA and also provided some helpful references for its laser additive manufacturing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Liao Ning Revitalization Talents Program

Major Special Project of “scientific and technological innovation 2025” in Ningbo

Publisher

MDPI AG

Subject

General Materials Science

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3