Uniaxial Compressive Stress–Strain Model of Jujube Nucleus Concrete following Exposure to Elevated Temperatures

Author:

Li Jieqi1,Jia Mingming2,Gao Shan2ORCID,Yuan Jian3

Affiliation:

1. School of Civil Engineering, Xijing University, Xi’an 710123, China

2. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China

3. Academy of Combat Support, Rocket Force University of Engineering, Xi’an 710025, China

Abstract

Aiming to provide a solution for natural resource consumption and agricultural waste pollution, jujube nucleus is utilized as a substitute for coarse aggregate in the preparation of lightweight aggregate concrete. The effect of the jujube nucleus (JN) replacement ratio and the elevated temperature on the uniaxial compressive stress–strain curves of jujube nucleus concrete (JNC) are experimentally studied. The results show that the failure of the JNC prisms became more serious with the increase in the JN replacement ratio. The linear proportion in ascending branch and the descending slope of the stress–strain curves for JNC increased gradually with the increase in the JN replacement ratio and elevated temperature, which is probably owing to the higher porosity and lower stiffness of the jujube nucleus, compared to natural aggregate. Moreover, as the JN replacement ratio and the elevated temperature increase, the peak stress and elastic modulus in the stress–strain curves of JNC decrease gradually, whilst an increase in the peak strain shows up, which is possibly due to the growth of hydrate calcium silicate and calcium hydroxide hampered by sucrose molecules. Based on the test results, a series of theoretical formulas are proposed to predict the compressive performance of JNC. A material constitutive model is developed for describing the stress–strain relationship of JNC by considering the JN replacement ratio and elevated temperature.

Funder

National innovation and entrepreneurship training program for College Students

Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3