Brillouin Light Scattering from Magnetic Excitations

Author:

Yoshihara Akira1

Affiliation:

1. Faculty of Science and Engineering, Ishinomaki Senshu University, Ishinomaki 986-8580, Japan

Abstract

Brillouin light scattering (BLS) has been established as a standard technique to study thermally excited sound waves with frequencies up to ~100 GHz in transparent materials. In BLS experiments, one usually uses a Fabry–Pérot interferometer (FPI) as a spectrometer. The drastic improvement of the FPI contrast factor over 1010 by the development of the multipass type and the tandem multipass type FPIs opened a gateway to investigate low energy excitations (ħω ≤ 1 meV) in various research fields of condensed matter physics, including surface acoustic waves and spin waves from opaque surfaces. Over the last four decades, the BLS technique has been successfully applied to study collective spin waves (SWs) in various types of magnetic structures including thin films, ultrathin films, multilayers, superlattices, and artificially arranged dots and wires using high-contrast FPIs. Now, the BLS technique has been fully established as a unique and powerful technique not only for determination of the basic magnetic constants, including the gyromagnetic ratio, the magnetic anisotropy constants, the magnetization, the SW stiffness constant, and other features of various magnetic materials and structures, but also for investigations into coupling phenomena and surface and interface phenomena in artificial magnetic structures. BLS investigations on the Fe/Cr multilayers, which exhibit ferromagnetic-antiferromagnetic arrangements of the adjacent Fe layer’s magnetizations depending on the Cr layer’s thickness, played an important role to open the new field known as “spintronics” through the discovery of the giant magnetoresistance (GMR) effect. In this review, I briefly surveyed the historical development of SW studies using the BLS technique and theoretical background, and I concentrated our BLS SW studies performed at Tohoku University and Ishinomaki Senshu University over the last thirty five years. In addition to the ferromagnetic SW studies, the BLS technique can be also applied to investigations of high-frequency magnetization dynamics in superparamagnetic (SPM) nanogranular films in the frequency domain above 10 GHz. One can excite dipole-coupled SPM excitations under external magnetic fields and observe them via the BLS technique. The external field strength determines the SPM excitations’ frequencies. By performing a numerical analysis of the BLS spectrum as a function of the external magnetic field and temperature, one can investigate the high-frequency magnetization dynamics in the SPM state and determine the magnetization relaxation parameters.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3