Improved Lead Sensing Using a Solid-Contact Ion-Selective Electrode with Polymeric Membrane Modified with Carbon Nanofibers and Ionic Liquid Nanocomposite

Author:

Wardak Cecylia1ORCID,Morawska Klaudia1,Paczosa-Bator Beata2ORCID,Grabarczyk Malgorzata1ORCID

Affiliation:

1. Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland

2. Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland

Abstract

A new solid-contact ion-selective electrode (ISE) sensitive to lead (II) ions, obtained by modifying a polymer membrane with a nanocomposite of carbon nanofibers and an ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate, is presented. Electrodes with a different amount of nanocomposite in the membrane (0–9% w/w), in which a platinum wire or a glassy carbon electrode was used as an internal electrode, were tested. Potentiometric and electrochemical impedance spectroscopy measurements were carried out to determine the effect of the ion-sensitive membrane modification on the analytical and electrical parameters of the ion-selective electrode. It was found that the addition of the nanocomposite causes beneficial changes in the properties of the membrane, i.e., a decrease in resistance and an increase in capacitance and hydrophobicity. As a result, the electrodes with the modified membrane were characterized by a lower limit of detection, a wider measuring range and better selectivity compared to the unmodified electrode. Moreover, a significant improvement in the stability and reversibility of the electrode potential was observed, and additionally, they were resistant to changes in the redox potential of the sample. The best parameters were shown by the electrode obtained with the use of a platinum wire as the inner electrode with a membrane containing 6% of the nanocomposite. The electrode exhibited a Nernstian response to lead ions over a wide concentration range, 1.0 × 10−8–1.0 × 10−2 mol L−1, with a slope of 31.5 mV/decade and detection limit of 6.0 × 10−9 mol L−1. In addition, the proposed sensor showed very good long term stability and worked properly 4 months after its preparation without essential changes in the E0 or slope values. It was used to analyze a real sample and correct results of lead content determination were obtained.

Funder

Polish Ministry of Science and Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3