High-Efficiency Frequency Doubling Blue-Laser VECSEL Based on Intracavity Beam Control

Author:

Zhang Zhuo1ORCID,Zhang Jianwei1,Du Ziye12ORCID,Chen Chao1ORCID,Zhou Yinli1,Sun Jingjing12,Liu Tianjiao1,Zhang Jiye1,Zhang Xing3,Ning Yongqiang1,Wang Lijun1

Affiliation:

1. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. ACE Photonics, No. 1759 Mingxi Road, Beihu Science and Technology Development Zone, Changchun 130102, China

Abstract

Blue lasers are integral to a variety of applications, including marine communication, underwater resource exploration, cold laser processing, laser medicine, and beyond. Vertical external cavity surface-emitting lasers (VECSELs) have the advantages of high output power and tunable wavelength, and can output blue laser via frequency doubling. In this article, a new type of intracavity beam control external-cavity structure is introduced. The laser beam waist is effectively adjusted by intracavity beam control, and the frequency conversion efficiency is improved. A laser cavity stability analysis model was developed to investigate the impact of laser cavity lens parameters and relative positions on stability. The external resonant cavity of VECSELs utilizes two optical lenses to position the beam waist near the laser output coupling mirror and locates the frequency doubling crystal at a high optical power density position to optimize frequency conversion efficiency. The VECSEL straight external-cavity structure achieves a frequency conversion efficiency of up to 60.2% at 488 nm, yielding a blue laser output exceeding 1.3 W. The full width at half maximum of the 488 nm spectrum measures approximately 0.23 nm. This intracavity beam-controlled direct external-cavity structure effectively mitigates laser mode leakage and shows potential for the development of an efficient and compact blue laser source.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research and Development Projects of Science and Technology Development in Jilin Province

Science and Technology Cooperation Project between Jilin Province and Chinese Academy of Sciences

China Postdoctoral Fund

Changchun Science and Technology Development Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3