Study on Soil Leaching Risk of Reuse of Reclaimed Fertilizer from Micro-Flush Sanitary Wastewater

Author:

Lv Minghuan,Zhu Shikun,Shi Yunpeng,Shu Shangyi,Li Ao,Fan Bin

Abstract

In view of the potential soil leaching risk of the reuse of fertilizer reclaimed from micro-flush sanitary wastewater, the batch tests of soil adsorption and degradation, soil column percolation test and multi-stage soil box percolation test were adopted. The characteristics of leachate after the interaction between reclaimed fertilizer and soil, as well as the changes of soil attributes in the soil box system, were analyzed. After obtaining the correlation coefficients of solute transport in soil through the above experiments, the HYDRUS-1D model was constructed to simulate the solute migration and transformation in the soil with a duration of 1 year and a soil thickness of 5 m. The impacts of leachate on groundwater and soil were analyzed. The results showed that the adsorption intensity of total ammonia nitrogen (TAN) (1n=0.8009) in the tested soil was lower than that of chemical oxygen demand (COD) (1n=1.1830). The HYDRUS prediction showed that concentrations of TAN and COD at the soil depth of 5 m were 0, while total nitrogen (TN) still had a concentration of 0.11 mg/L. However, the TN leaching into the deep soil mainly came from the soil itself. The TAN at 3.4 m soil showed an upward trend in the prediction period. In addition, the reuse of reclaimed fertilizer can expand the soil nutrient inventory, which is conducive to the improvement of soil fertility. It can be concluded that the soil leaching risk of reuse of reclaimed fertilizer is not significant in the short term (one year). However, the risk of fertilization on soil with high-nitrogen background value should be paid attention to in the long term.

Funder

National Key Research and development Program of China

Major Program of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3