CFD Simulation of a Submersible Passive Rotor at a Pipe Outlet under Time-Varying Water Jet Flux

Author:

Farouk MohamedORCID,Kriaa Karim,Elgamal Mohamed

Abstract

During the past two decades, passive rotors have been proposed and introduced to be used in a number of different water sector applications. One of these applications is the use of a passive rotor at the outlets of pipe outfalls to enhance mixing. The main objective of this study is to develop a CFD computational workflow to numerically examine the feasibility of using a passive rotor downstream of the outlet of pipe outfalls to improve the mixing properties of the near flow field. The numerical simulation for a pipe outlet with a passive rotor is a numerical challenge because of the nonlinear water-structure interactions between the water flow and the rotor. This study utilizes a computational workflow based on the ANSYS FLUENT to simulate that water-structure interaction to estimate the variation in time of the angular speed (ω) of a passive rotor initially at rest and then subjected to time-varying water velocity (υ). Two computational techniques were investigated: the six-degrees-of-freedom (6DOF) and the sliding mesh (SM). The 6DOF method was applied first to obtain a mathematical relation of ω as a function of the water velocity (υ). The SM technique was used next (based on the deduced ω-υ relation by the 6DOF) to minimize the calculation time considerably. The study has shown that the 6DOF technique accurately determines both maximum and temporal angular speeds, with discrepancies within 3% of the measured values. A number of numerical runs were conducted to investigate the effect of the gap distance between the passive rotor and the pipe outlet and to examine the effect of using the passive rotor on the near flow field downstream of the rotor. The model results showed that as the gap distance of the pipe outlet to the passive rotor increases, the rotor’s maximum angular speed decreases following a decline power-law trend. The numerical model results also revealed that the passive rotor creates a spiral motion that extends downstream to about 15 times the pipe outlet diameter. The passive rotor significantly increases the turbulence intensity by more than 500% in the near field zone of the pipe outlet; however, this effect rapidly vanishes after four times the pipe diameter.

Funder

Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. The Role of Desalination in an Increasingly Water-Scarce World,2019

2. https://ussaudi.org/water-in-saudi-arabia-desalination-wastewater-and-privatization/

3. Consideration of structural constraints in passive rotor blade design for improved performance

4. Hydraulic performance of sluice gate with unloaded upstream rotor

5. Drainage of a Water Tank with Pipe Outlet Loaded by a Passive Rotor

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3