Computation of High-Order Sensitivities of Model Responses to Model Parameters—II: Introducing the Second-Order Adjoint Sensitivity Analysis Methodology for Computing Response Sensitivities to Functions/Features of Parameters

Author:

Cacuci Dan Gabriel1ORCID

Affiliation:

1. Center for Nuclear Science and Energy, University of South Carolina, Columbia, SC 29208, USA

Abstract

This work introduces a new methodology, which generalizes the extant second-order adjoint sensitivity analysis methodology for computing sensitivities of model responses to primary model parameters. This new methodology enables the computation, with unparalleled efficiency, of second-order sensitivities of responses to functions of uncertain model parameters, including uncertain boundaries and internal interfaces, for linear and/or nonlinear models. Such functions of primary model parameters customarily describe characteristic “features” of the system under consideration, including correlations modeling material properties, flow regimes, etc. The number of such “feature” functions is considerably smaller than the total number of primary model parameters. By enabling the computations of exact expressions of second-order sensitivities of model responses to model “features”, the number of required large-scale adjoint computations is greatly reduced. As shown in this work, obtaining the first- and second-order sensitivities to the primary model parameters from the corresponding response sensitivities to the feature functions can be performed analytically, thereby involving just the respective function/feature of parameters rather than the entire model. By replacing large-scale computations involving the model with relatively trivial computations involving just the feature functions, this new second-order adjoint sensitivity analysis methodology reaches unsurpassed efficiency. The applicability and unparalleled efficiency of this “2nd-Order Function/Feature Adjoint Sensitivity Analysis Methodology” (2nd-FASAM) is illustrated using a paradigm particle transport model that involves feature functions of many parameters, while admitting closed-form analytic solutions. Ongoing work will generalize the mathematical framework of the 2nd-FASAM to enable the computation of arbitrarily high-order sensitivities of model responses to functions/features of model parameters.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3