Narrow Band Frequency Response Analysis of Power Transformers with Deep Learning

Author:

Phillip Micah1,Singh Arvind1ORCID,Ramlal Craig J.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago

Abstract

Frequency response analysis (FRA) is a standard technique for monitoring the integrity of the mechanical structure of power transformer windings. To date, however, there remains no suitable method for online testing using this technique. One of the main issues that persists is that any hardware designed to measure the frequencies in the range of interest would filter out frequency bands used for assessment by humans. The growth of pattern recognition capabilities in deep learning networks, however, now offers the possibility of detecting different types of faults in a narrow frequency band, which is simply not possible for human experts. This paper explores the ability of a selection of typical networks to classify common faults within different bands. The results show that networks are able to identify faults in bands where humans are unable to find them, which has implications for signal processing and electronics design in developing a system for online monitoring.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3