A Review of Current Advances in Ammonia Combustion from the Fundamentals to Applications in Internal Combustion Engines

Author:

Ma Fei1,Guo Lingyan1,Li Zhijie1,Zeng Xiaoxiao1,Zheng Zhencao2,Li Wei1,Zhao Feiyang2,Yu Wenbin2

Affiliation:

1. State Key Laboratory of Engine and Powertrain System, Weichai Power Co., Ltd., Weifang 261061, China

2. School of Energy and Power Engineering, Shandong University, Jinan 250100, China

Abstract

The energy transition from hydrocarbon-based energy sources to renewable and carbon-free energy sources such as wind, solar and hydrogen is facing increasing demands. The decarbonization of global transportation could come true via applying carbon-free fuel such as ammonia, especially for internal combustion engines (ICEs). Although ammonia has advantages of high hydrogen content, high octane number and safety in storage, it is uninflammable with low laminar burning velocity, thus limiting its direct usage in ICEs. The purpose of this review paper is to provide previous studies and current research on the current technical advances emerging in assisted combustion of ammonia. The limitation of ammonia utilization in ICEs, such as large minimum ignition energy, lower flame speed and more NOx emission with unburned NH3, could be solved by oxygen-enriched combustion, ammonia–hydrogen mixed combustion and plasma-assisted combustion (PAC). In dual-fuel or oxygen-enriched NH3 combustion, accelerated flame propagation speeds are driven by abundant radicals such as H and OH; however, NOx emission should be paid special attention. Furthermore, dissociating NH3 in situ hydrogen by non-noble metal catalysts or plasma has the potential to replace dual-fuel systems. PAC is able to change classical ignition and extinction S-curves to monotonic stretching, which makes low-temperature ignition possible while leading moderate NOx emissions. In this review, the underlying fundamental mechanism under these technologies are introduced in detail, providing new insight into overcoming the bottleneck of applying ammonia in ICEs. Finally, the feasibility of ammonia processing as an ICE power source for transport and usage highlights it as an appealing choice for the link between carbon-free energy and power demand.

Funder

Open Funds of State Key Laboratory of Engine Reliability

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference82 articles.

1. Hydrogen production for energy: An overview;Dawood;Int. J. Hydrogen Energy,2020

2. Insights on cold plasma ammonia synthesis and decomposition using alkaline earth metal-based perovskites;Gorky;Catal. Sci. Technol.,2021

3. Measurement of oxy-ammonia laminar burning velocity at normal and elevated temperatures;Wang;Fuel,2020

4. Bartels, J.R. (2008). A Feasibility Study of Implementing an Ammonia Economy. [Master’s Thesis, Iowa State University].

5. Ammonia as a renewable energy transportation media;Giddey;ACS Sustain. Chem. Eng.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3