Forecast of Operational Downtime of the Generating Units for Sediment Cleaning in the Water Intakes: A Case of the Jirau Hydropower Plant

Author:

Prado Lenio1ORCID,Fonseca Marcelo2,Bernardes José V.3ORCID,Santos Mateus G.1ORCID,Bortoni Edson C.3ORCID,Bastos Guilherme S.1ORCID

Affiliation:

1. Systems Engineering and Information Technology Institute, Itajubá Federal University, Itajubá 37500-903, Brazil

2. JIRAU ENERGIA, Distrito de Jaci-Paraná, Porto Velho 76840-000, Brazil

3. Electric and Energy Systems Institute, Itajubá Federal University, Itajubá 37500-903, Brazil

Abstract

Hydropower plants (HPP) in the Amazon basin suffer from issues caused by trees and sediments carried by the river. The Jirau HPP, located in the occidental Amazon basin, is directly affected by high sediment transportation. These materials accumulate in the water intakes and obstruct the trash racks installed in the intake system to prevent the entry of materials. As a result, head losses negatively impact the efficiency of the generating units and the power production capacity. The HPP operation team must monitor these losses and take action timely to clear the intakes. One of the possible actions is to stop the GU to let the sediment settle down. Therefore, intelligent methods are required to predict the downtime for sediment settling and restoring operational functionality. Thus, this work proposes a technique that utilizes hidden Markov models and Bayesian networks to predict the fifty Jirau generation units’ downtime, thereby reducing their inactive time and providing methodologies for establishing operating rules. The model is based on accurate operational data extracted from the hydropower plant, which ensures greater fidelity to the daily operational reality of the plant. The results demonstrate the model’s effectiveness and indicate the extent of the impact on downtime under varying sediment levels and when neighboring units are generating or inactive.

Funder

Energia Sustentável do Brasil S.A.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3