Affiliation:
1. Key Laboratory of Nondestructive Testing Technology Ministry of Education, Nanchang 400074, China
2. Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
Abstract
A pavement’s roughness seriously affects its service life and driving comfort. Considering the complexity and low accuracy of the current recognition algorithms for the roughness grade of pavements, this paper proposes a real-time pavement roughness recognition method with a lightweight residual convolutional network and time-series acceleration. Firstly, a random input pavement model is established by the white noise method, and the pavement roughness of a 1/4 vehicle vibration model is simulated to obtain the vehicle vibration response data. Then, the residual convolutional network is used to learn the deep-level information of the sample signal. The residual convolutional neural network recognizes the pavement roughness grade quickly and accurately. The experimental results show that the residual convolutional neural network has a robust feature-capturing ability for vehicle vibration signals, and the classification features can be obtained quickly. The accuracy of pavement roughness classification is as high as 98.7%, which significantly improves the accuracy and reduces the computational effort of the recognition algorithm, and is suitable for pavement roughness grade classification.
Funder
Open Research Fund of Key Laboratory of Non-Destructive Testing Technology, Ministry of Education
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献