Distributed Generation Forecasting Based on Rolling Graph Neural Network (ROLL-GNN)

Author:

Xue Jizhong1,Kang Zaohui1,Lai Chun Sing12ORCID,Wang Yu1,Xu Fangyuan1,Yuan Haoliang1ORCID

Affiliation:

1. Department of Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. Brunel Interdisciplinary Power Systems Research Centre, Department of Electronic and Electrical Engineering, Brunel University London, London UB8 3PH, UK

Abstract

The future power grid will have more distributed energy sources, and the widespread access of distributed energy sources has the potential to improve the energy efficiency, resilience, and sustainability of the system. However, distributed energy, mainly wind power generation and photovoltaic power generation, has the characteristics of intermittency and strong randomness, which will bring challenges to the safe operation of the power grid. Accurate prediction of solar power generation with high spatial and temporal resolution is very important for the normal operation of the power grid. In order to improve the accuracy of distributed photovoltaic power generation prediction, this paper proposes a new distributed photovoltaic power generation prediction model: ROLL-GNN, which is defined as a prediction model based on rolling prediction of the graph neural network. The ROLL-GNN uses the perspective of graph signal processing to model distributed generation production timeseries data as signals on graphs. In the model, the similarity of data is used to capture their spatio-temporal dependencies to achieve improved prediction accuracy.

Funder

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Basic Research Program of Jiangsu Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3