High-Precision Acquisition Method of Position Signal of Permanent Magnet Direct Drive Servo Motor at Low Speed

Author:

Zhang Deli1ORCID,Dong Zhaopeng2,Bu Feifei2,Gu Zijie2,Guo Zitao2

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

This paper studies a method for high-precision acquisition of position signals for permanent magnet direct drive servo motors at low speed. First of all, the problem of poor position feedback accuracy and sensor feedback delay in the low-speed operation of the permanent magnet direct drive servo motor is analyzed. Secondly, through analysis and simulation, it is found that the interpolation method can play a certain role in compensating the rotor position signal. However, when the speed is close to 0, the output signal of the sensor will fluctuate in a short time, which will affect the speed control accuracy. Therefore, this paper uses the observer method to achieve high-precision acquisition of the position signal of the permanent magnet direct drive servo motor at low speed. The observer method adopts the idea of combining the system model and closed-loop control. Additionally, it makes full use of the parameter information of the motor system. The control performance of the motor can be better guaranteed through the design of the observer parameters and the accuracy of the rotor position estimation result has been greatly improved. Finally, an experimental platform for permanent magnet direct drive servo motors is built, and the rotor position signal acquisition method based on the observer method is verified to have good performance through simulation and experiments. Not only the accuracy of the rotor position estimation result is improved, but also the motor control performance is improved, realizing the stable operation of the permanent magnet direct drive servo motor at low speed.

Funder

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3