Machine Learning Requirements for Energy-Efficient Virtual Network Embedding

Author:

Hesselbach Xavier1ORCID,Escobar-Perez David1ORCID

Affiliation:

1. Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain

Abstract

Network virtualization is a technology proven to be a key enabling a family of strategies in different targets, such as energy efficiency, economic revenue, network usage, adaptability or failure protection. Network virtualization allows us to adapt the needs of a network to new circumstances, resulting in greater flexibility. The allocation decisions of the demands onto the physical network resources impact the costs and the benefits. Therefore it is one of the major current problems, called virtual network embedding (VNE). Many algorithms have been proposed recently in the literature to solve the VNE problem for different targets. Due to the current successful rise of artificial intelligence, it has been widely used recently to solve technological problems. In this context, this paper investigates the requirements and analyses the use of the Q-learning algorithm for energy-efficient VNE. The results achieved validate the strategy and show clear improvements in terms of cost/revenue and energy savings, compared to traditional algorithms.

Funder

Agencia Estatal de Investigación of Ministerio de Ciencia e Innovación of Spain

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference17 articles.

1. Virtual Network Embedding: A Survey;Fischer;IEEE Commun. Surv. Tutor.,2013

2. A survey of embedding algorithm for virtual network embedding;Cao;China Commun.,2019

3. Node Essentiality Assessment and Distributed Collaborative Virtual Network Embedding in Datacenters;Fan;IEEE Trans. Parallel Distrib. Syst.,2023

4. Andersen, D.G. (2021, September 29). Theorical Approaches to Node Assignment. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.1332.

5. (2021, September 29). NP (Complexitat)—Viquipèdia, L’enciclopèdia Lliure. Available online: https://ca.wikipedia.org/wiki/NP_(Complexitat).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3