Effects of Growth Temperature on the Morphological, Structural, and Electrical Properties of CIGS Thin Film for Use in Solar Cell Applications

Author:

Nguyen Hoang Lam1,Lee Hyosang2,F. Shaikh Shoyebmohamad3ORCID,Khan Hassnain Abbas4,Tamboli Mohaseen S.5ORCID,Jung Jae Hak2,Truong Nguyen Tam Nguyen2

Affiliation:

1. Tra Vinh University, Tra Vinh 940000, Vietnam

2. School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea

3. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

4. Clean Energy Research Centre, Korea Institute of Science and Technology, P.O. Box 131, Seoul 02792, Republic of Korea

5. Korea Institute of Energy Technology (KENTECH), 21 KENTECH-gil, Naju 58330, Republic of Korea

Abstract

Cu-In-Ga-Se nanoparticles (NPs) were synthesized using a colloidal route process. The effects of growth temperature (GT) on the properties of CuInGaSe2 (CIGS) thin films made from these nanoparticles were investigated using TEM, PL, XRD, and SEM techniques. The Cu-In-Ga-Se NPs were synthesized at growth temperatures ranging from 90 °C to 105 °C and then annealed at 550 °C for 7 min under a Se ambient. The resulting CIGS thin film, formed from Cu-In-Ga-Se NPs synthesized at a GT of 90 °C (referred to as GT90-CIGS), showed a tetragonal structure, large grain size, and high sunlight absorption. It had a band gap energy (Eg) of approximately 0.94 eV. Non-vacuum GT90-CIGS-based solar cells were investigated and fabricated using varying thicknesses of a CdS buffer layer. The maximum power conversion efficiency achieved was approximately 8.3% with an optimized device structure of Al/ITO/ZnO/CdS/CIGS/Mo.

Funder

KIST School Partnership Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3