Intelligent Prediction of Transformer Loss for Low Voltage Recovery in Distribution Network with Unbalanced Load

Author:

Dai Zikuo1,Shi Kejian2,Zhu Yidong2,Zhang Xinyu2,Luo Yanhong3

Affiliation:

1. Equipment Management Department, State Grid Liaoning Electric Power Company, Shenyang 110055, China

2. Electric Power Research Institute, State Grid Liaoning Electric Power Company, Shenyang 110055, China

3. School of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract

In order to solve the problem of low voltage caused by unbalanced load in the distribution network, a transformer loss intelligent prediction model under unbalanced load is proposed. Firstly, the mathematical model of a transformer with an unbalanced load is established. The zero-sequence impedance and neutral line current of the transformer are calculated by using the Chaos Game Optimization algorithm (CGO), and the correctness of the mathematical model is proved by using actual data. Then, the correlation among network input variables is eliminated by using Principal Component Analysis (PCA), so the number of network input variables is decreased. At the same time, Sparrow Search Algorithm (SSA) is used to optimize the initial weight and threshold of the BP network, and an accurate transformer loss prediction model based on the PCA-SSA-BP is established. Finally, compared with the transformer loss prediction model based on BP network, Genetic Algorithm optimized BP network (GA-BP), Particle Swarm optimized BP network (PSO-BP) and Sparrow Search Algorithm optimized BP network (SSA-BP), the transformer loss prediction model based on PCA-SSA-BP network has been proven to be accurate by using actual data and it is helpful for low-voltage recovery in the distribution network.

Funder

National Natural Science Foundation of China

Shenyang Science & Technology Innovation Program for Young and Middle-aged Talents

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3