A Data-Driven Approach for Generating Vortex-Shedding Regime Maps for an Oscillating Cylinder

Author:

Cann Matthew1,McConkey Ryley1,Lien Fue-Sang1ORCID,Melek William1,Yee Eugene1

Affiliation:

1. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

This study presents a data-driven approach for generating vortex-shedding maps, which are vital for predicting flow structures in vortex-induced vibration (VIV) wind energy extraction devices, while addressing the computational and complexity limitations of traditional methods. The approach employs unsupervised clustering techniques on subsequences extracted using the matrix profile method from local flow measurements in the wake of an oscillating circular cylinder generated from 2-dimensional computational fluid dynamics simulations of VIV. The proposed clustering methods were validated by reproducing a benchmark map produced at a low Reynolds number (Re = 4000) and then extended to a higher Reynolds number (Re = 10,000) to gain insights into the complex flow regimes. The multi-step clustering methods used density-based and k-Means clustering for the pre-clustering stage and agglomerative clustering using dynamic time warping (DTW) as the similarity measure for final clustering. The clustering methods achieved exceptional performance at high-Reynolds-number flow, with scores in the silhouette index (0.4822 and 0.4694) and Dunn index (0.3156 and 0.2858) demonstrating the accuracy and versatility of the hybrid clustering methods. This data-driven approach enables the generation of more accurate and feasible maps for vortex-shedding applications, which could improve the design and optimization of VIV wind energy harvesting systems.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3