Numerical and Experimental Investigation of the Decoupling Combustion Characteristics of a Burner with Flame Stabilizer

Author:

Wang Jing1ORCID,Yang Jingchi1,Yang Fengling1,Cheng Fangqin1

Affiliation:

1. State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Engineering Research Center of Ministry of Education for Resource Efficiency Enhancing and Carbon Emission Reduction in Yellow River Basin, Institute of Resource and Environment Engineering, Shanxi University, Taiyuan 030006, China

Abstract

In order to integrate renewable electricity into the power grid, it is crucial for coal-fired power plant boilers to operate stably across a wide load range. Achieving steady combustion with low nitrogen oxide (NOx) emissions poses a significant challenge for boilers burning low-volatile coal in coal-fired power plants. This study focuses on developing a decoupling combustion technology for low-volatile coal-fired boilers operating at low loads. A three-dimensional numerical simulation is employed to analyze and optimize the geometrical parameters of a burner applied in a real 300 MW pulverized coal fired boiler. Detailed analysis of the burner’s decoupling combustion characteristics, including stable combustion ability and NOx reduction principles, is conducted. The results indicate that this burner showed three stages of coal/air separation, and the flame holder facilitates the stepwise spontaneous ignition and combustion of low-volatile coal. By extending the time between coal pyrolysis and carbon combustion, the burner enhances decoupling combustion and achieves low nitrogen oxide emissions. Based on optimization, a flat partition plate without inclination demonstrates excellent performance in terms of velocity vector field distribution, coal air flow rich/lean separation, combustion, and nitrogen oxide generation. Compared with the initial structural design, the average nitrogen oxide concentration at the outlet is reduced by 59%.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3