Ground Based Hyperspectral Imaging to Characterize Canopy-Level Photosynthetic Activities

Author:

Jiang YuORCID,Snider John L.,Li ChangyingORCID,Rains Glen C.ORCID,Paterson Andrew H.

Abstract

Improving plant photosynthesis provides the best possibility for increasing crop yield potential, which is considered a crucial effort for global food security. Chlorophyll fluorescence is an important indicator for the study of plant photosynthesis. Previous studies have intensively examined the use of spectrometer, airborne, and spaceborne spectral data to retrieve solar induced fluorescence (SIF) for estimating gross primary productivity and carbon fixation. None of the methods, however, had a spatial resolution and a scanning throughput suitable for applications at the canopy and sub-canopy levels, thereby limiting photosynthesis analysis for breeding programs and genetics/genomics studies. The goal of this study was to develop a hyperspectral imaging approach to characterize plant photosynthesis at the canopy level. An experimental field was planted with two cotton cultivars that received two different treatments (control and herbicide treated), with each cultivar-treatment combination having eight replicate 10 m plots. A ground mobile sensing system (GPhenoVision) was configured with a hyperspectral module consisting of a spectrometer and a hyperspectral camera that covered the spectral range from 400 to 1000 nm with a spectral sampling resolution of 2 nm. The system acquired downwelling irradiance spectra from the spectrometer and reflected radiance spectral images from the hyperspectral camera. On the day after 24 h of the DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) application, the system was used to conduct six data collection trials in the experiment field from 08:00 to 18:00 with an interval of two hours. A data processing pipeline was developed to measure SIF using the irradiance and radiance spectral data. Diurnal SIF measurements were used to estimate the effective quantum yield and electron transport rate, deriving rapid light curves (RLCs) to characterize photosynthetic efficiency at the group and plot levels. Experimental results showed that the effective quantum yields estimated by the developed method highly correlated with those measured by a pulse amplitude modulation (PAM) fluorometer. In addition, RLC characteristics calculated using the developed method showed similar statistical trends with those derived using the PAM data. Both the RLC and PAM data agreed with destructive growth analyses. This suggests that the developed method can be used as an effective tool for future breeding programs and genetics/genomics studies to characterize plant photosynthesis at the canopy level.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference65 articles.

1. Global food demand and the sustainable intensification of agriculture

2. 2018 Global Agricultural Productivity Reporthttps://globalagriculturalproductivity.org/

3. Physiological breeding

4. Solar Radiation and Productivity in Tropical Ecosystems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3