Measuring the Directional Ocean Spectrum from Simulated Bistatic HF Radar Data

Author:

Hardman Rachael L.ORCID,Wyatt Lucy R.ORCID,Engleback Charles C.

Abstract

HF radars are becoming important components of coastal operational monitoring systems particularly for currents and mostly using monostatic radar systems where the transmit and receive antennas are colocated. A bistatic configuration, where the transmit antenna is separated from the receive antennas, offers some advantages and has been used for current measurement. Currents are measured using the Doppler shift from ocean waves which are Bragg-matched to the radio signal. Obtaining a wave measurement is more complicated. In this paper, the theoretical basis for bistatic wave measurement with a phased-array HF radar is reviewed and clarified. Simulations of monostatic and bistatic radar data have been made using wave models and wave spectral data. The Seaview monostatic inversion method for waves, currents and winds has been modified to allow for a bistatic configuration and has been applied to the simulated data for two receive sites. Comparisons of current and wave parameters and of wave spectra are presented. The results are encouraging, although the monostatic results are more accurate. Large bistatic angles seem to reduce the accuracy of the derived oceanographic measurements, although directional spectra match well over most of the frequency range.

Funder

Engineering and Physical Sciences Research Council

University of Sheffield

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reconstruction of the Frequency-Wavenumber Spectrum of Water Waves With an Airborne Acoustic Doppler Array for Noncontact River Monitoring;IEEE Transactions on Geoscience and Remote Sensing;2024

2. Bragg Peak Detection Using Compatible Mother Wavelet on Oceanographic HF Radar Signals;2023 15th International Conference on Information Technology and Electrical Engineering (ICITEE);2023-10-26

3. Inversion of Ocean Wavenumber Spectrum from the Bistatic High-frequency Radar Sea Echoes;2022 Photonics & Electromagnetics Research Symposium (PIERS);2022-04-25

4. Measurement of Sea Waves;Measurement for the Sea;2022

5. Vessel Velocity Estimation and Tracking From Doppler Echoes of T/R-R Composite Compact HFSWR;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3