Thermal Sensitivity of High Mountain Lakes: The Role of Morphometry and Topography (The Tatra Mts., Poland)

Author:

Szumny Mirosław,Gądek BogdanORCID,Laska MichałORCID,Ciepły Michał

Abstract

This study presents the results of a 5-year monitoring program of ice cover, water temperature, and local meteorological conditions carried out in three reference lakes in the periglacial zone of the Polish Tatra Mountains. On the basis of this information, the relationships between the weighted mean water temperature of each of these lakes and the air temperature, wind speed, precipitation, and ice–snow cover in the summer, spring, and autumn seasons, as well as year-round, were described, and the roles of the morphometry of lakes and the topography of their catchments were determined. It was found that the sensitivity of the lakes to climate warming increased with a decrease in their area/depth and shade, and with an increase in altitude and the share of wind-blown snow in the formation of the ice–snow cover. An increase in the mean annual air temperature does not necessarily translate into the warming of lakes, but, paradoxically, may result in their cooling. The current climate may not be best reflected by the most sensitive lakes, but rather by the largest ones located in the subalpine zone.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3