Abstract
Internal traverse grinding (ITG) using electroplated cBN tools in high-speed grinding conditions is a highly efficient manufacturing process for bore machining in a single axial stroke. However, process control is difficult. Due to the axial direction of feed, changes in process normal force and thus radial deflection of the tool and workpiece spindle system, lead to deviations in the workpiece contour along the length of the bore, especially at tool exit. Simulations including this effect could provide a tool to design processes which enhance shape accuracy of components. A geometrical physically-based simulation is herein developed to model the influence of system compliance on the resulting workpiece contour. Realistic tool topographies, obtained from measurements, are combined with an FE-calibrated surrogate model for process forces and with an empirical compliance model. In quasistatic experimental investigations, the spindle deflection is determined in relation to the acting normal forces by using piezoelectric force measuring elements and eddy current sensors. In grinding tests with in-process force measurement technology and followed by measurement of the resulting workpiece contours, the simulation system is validated. The process forces and the resulting characteristic shape deviations are predicted in good qualitative accordance with the experimental results.
Funder
Deutsche Forschungsgemeinschaft
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献