Adiabatic Blanking: Influence of Clearance, Impact Energy, and Velocity on the Blanked Surface

Author:

Winter SvenORCID,Nestler MatthiasORCID,Galiev Elmar,Hartmann Felix,Psyk VerenaORCID,Kräusel Verena,Dix Martin

Abstract

In contrast to other cutting processes, adiabatic blanking typically features high blanking velocities (>3 m/s), which can lead to the formation of adiabatic shear bands in the blanking surface. The produced surfaces have excellent properties, such as high hardness, low roll-over, and low roughness. However, details about the qualitative and quantitative influence of significant process parameters on the quality of the blanked surface are still lacking. In the presented study, a variable tool is used for a systematic investigation of different process parameters and their influences on the blanked surface of a hardened 22MnB5 steel. Different relative clearances (1.67% to 16.67%), velocities (7 to 12.5 m/s), and impact energies (250 J to 1000 J) were studied in detail. It is demonstrated that a relative clearance of ≤6.67% and an impact velocity of ≥7 m/s lead to adiabatic shear band formation, regardless of the impact energy. Further, an initiated shear band results in the formation of an S-shaped surface. Unexpectedly, a low impact energy results in the highest geometric accuracy. The influence of the clearance, the velocity, and the impact energy on the evolution of adiabatic shear band formation is shown for the first time. The gained knowledge can enable a functionalization of the blanked surfaces in the future.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference27 articles.

1. Burr-free cutting edges by notch-shear cutting

2. Finite element simulation and experimental investigation of the effect of clearance on the forming quality in the fine blanking process

3. Investigation of Application Potentials and Limits of Adiabatic Cutting and Punching Operations;Neugebauer,2010

4. Adiabatic blanking of advanced high-strength steels

5. Hochgeschwindigkeitsscherschneiden hält Einzug in die Blechbearbeitung;Neugebauer;Wt. Werkstattstech. Online,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3