Optimal Selection of Backside Roughing Parameters of High-Value Components Using Abrasive Jet Processing

Author:

Tsai Feng-CheORCID

Abstract

This paper mainly presents a set of new Sapphire Backside Roughing technology. Presently, the associated Sapphire Backside Roughing technology is still concentrated on chemical etching, as its yield rate and efficiency are often limited by lattice structures, and the derived chemical waste fluid after etching is most likely to cause ecological contamination. In this research, refined abrasive jet processing technology is adopted, and in the meantime, the Taguchi experiment design method is taken for detailed experimental planning. Through processing parameter conditions and abrasive selection and development, proper surface roughing and processing uniformity are obtained so as to improve the various weak points of the abovementioned traditional etching effectively. It is discovered that abrasive blasting processing technology is, respectively, combined with wax-coated #1000 SiC particles and wax-coated #800 Zirconium particles to process the sapphire substrate with initial surface roughness 0.8–0.9 μmRa from the experiment. A 1.1–1.2 μmRa surface roughness effect can be achieved about two minutes later. The experimental results show that the actual degree of sapphire substrate surface roughing obtained in the AJM process depends on the gas pressure, impact angle, wax-coated abrasives, and additives. The new Sapphire Backside Roughing technology has high flexibility, which not only meets the requirements for sapphire surface roughing specification but can also effectively reduce the sapphire substrate roughing time and related cost.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3