Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data

Author:

Gómez ,Salvador ,Sanz ,Casanova

Abstract

Traditional potato growth models evidence certain limitations, such as the cost of obtaining the input data required to run the models, the lack of spatial information in some instances, or the actual quality of input data. In order to address these issues, we develop a model to predict potato yield using satellite remote sensing. In an effort to offer a good predictive model that improves the state of the art on potato precision agriculture, we use images from the twin Sentinel 2 satellites (European Space Agency—Copernicus Programme) over three growing seasons, applying different machine learning models. First, we fitted nine machine learning algorithms with various pre-processing scenarios using variables from July, August and September based on the red, red-edge and infra-red bands of the spectrum. Second, we selected the best performing models and evaluated them against independent test data. Finally, we repeated the previous two steps using only variables corresponding to July and August. Our results showed that the feature selection step proved vital during data pre-processing in order to reduce multicollinearity among predictors. The Regression Quantile Lasso model (11.67% Root Mean Square Error, RMSE; R2 = 0.88 and 9.18% Mean Absolute Error, MAE) and Leap Backwards model (10.94% RMSE, R2 = 0.89 and 8.95% MAE) performed better when predictors with a correlation coefficient > 0.5 were removed from the dataset. In contrast, the Support Vector Machine Radial (svmRadial) performed better with no feature selection method (11.7% RMSE, R2 = 0.93 and 8.64% MAE). In addition, we used a random forest model to predict potato yields in Castilla y León (Spain) 1–2 months prior to harvest, and obtained satisfactory results (11.16% RMSE, R2 = 0.89 and 8.71% MAE). These results demonstrate the suitability of our models to predict potato yields in the region studied.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3