Geodetic Constraints on the Crustal Deformation along the Kunlun Fault and Its Tectonic Implications

Author:

Li Yanchuan,Shan Xinjian,Qu Chunyan

Abstract

This study focuses on the crustal deformation and interseismic fault coupling along the strike-slip Kunlun fault, northern Tibet, whose western segment ruptured in the 2001 Mw 7.8 Kokoxili earthquake. We first integrated published Global Positioning System (GPS) velocity solutions and calculated strain rate fields covering the Kunlun fault. Our results show abnormally high post-earthquake strain rate values across the ruptures; furthermore, these exceed those in pre-earthquake data. Together with two tracks of interferometric synthetic aperture radar (InSAR) observations (2003–2010) and position time-series data from two continuous GPS sites, we show that the postseismic deformation of the Kokoxili earthquake may continue up to 2014; and that the postseismic transients of the earthquake affect the 2001–2014 GPS velocity solutions. We then processed the GPS data observed in 2014–2017 and obtained a dense interseismic velocity field for the northern Tibet. Using a fault dislocation model in a Bayesian framework, we estimated the slip rates and fault coupling on the Kunlun fault in 1991–2001 and 2014–2017. Results show an increase of slip rates and eastward migration of high fault coupling on the Kunlun fault after 2001. We propose the temporal variations are a result of the eastward accelerating movement, as a whole, of the Bayanhar block, whose boundaries were decoupled by several large earthquakes since 1997. Moreover, our results show the accumulated elastic strains along the Alake Lake-Tuosuo Lake segments could be balanced by an Mw 7.4–7.7 earthquake.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3