Author:
Li Yanchuan,Shan Xinjian,Qu Chunyan
Abstract
This study focuses on the crustal deformation and interseismic fault coupling along the strike-slip Kunlun fault, northern Tibet, whose western segment ruptured in the 2001 Mw 7.8 Kokoxili earthquake. We first integrated published Global Positioning System (GPS) velocity solutions and calculated strain rate fields covering the Kunlun fault. Our results show abnormally high post-earthquake strain rate values across the ruptures; furthermore, these exceed those in pre-earthquake data. Together with two tracks of interferometric synthetic aperture radar (InSAR) observations (2003–2010) and position time-series data from two continuous GPS sites, we show that the postseismic deformation of the Kokoxili earthquake may continue up to 2014; and that the postseismic transients of the earthquake affect the 2001–2014 GPS velocity solutions. We then processed the GPS data observed in 2014–2017 and obtained a dense interseismic velocity field for the northern Tibet. Using a fault dislocation model in a Bayesian framework, we estimated the slip rates and fault coupling on the Kunlun fault in 1991–2001 and 2014–2017. Results show an increase of slip rates and eastward migration of high fault coupling on the Kunlun fault after 2001. We propose the temporal variations are a result of the eastward accelerating movement, as a whole, of the Bayanhar block, whose boundaries were decoupled by several large earthquakes since 1997. Moreover, our results show the accumulated elastic strains along the Alake Lake-Tuosuo Lake segments could be balanced by an Mw 7.4–7.7 earthquake.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献