Retrieval of Total Precipitable Water from Himawari-8 AHI Data: A Comparison of Random Forest, Extreme Gradient Boosting, and Deep Neural Network

Author:

Lee Yeonjin,Han DaehyeonORCID,Ahn Myoung-HwanORCID,Im JunghoORCID,Lee Su JeongORCID

Abstract

Total precipitable water (TPW), a column of water vapor content in the atmosphere, provides information on the spatial distribution of moisture. The high-resolution TPW, together with atmospheric stability indices such as convective available potential energy (CAPE), is an effective indicator of severe weather phenomena in the pre-convective atmospheric condition. With the advent of high performing imaging instrument onboard geostationary satellites such as Advanced Himawari Imager (AHI) onboard Himawari-8 of Japan and Advanced Meteorological Imager (AMI) onboard GeoKompsat-2A of Korea, it is expected that unprecedented spatiotemporal resolution data (e.g., AMI plans to provide 2 km resolution data at every 2 min over the northeast part of East Asia) will be provided. To derive TPW from such high-resolution data in a timely fashion, an efficient algorithm is highly required. Here, machine learning approaches—random forest (RF), extreme gradient boosting (XGB), and deep neural network (DNN)—are assessed for the TPW retrieved from AHI over the clear sky in Northeast Asia area. For the training dataset, the nine infrared brightness temperatures (BT) of AHI (BT8 to 16 centered at 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, and 13.3 μ m , respectively), six dual channel differences and observation conditions such as time, latitude, longitude, and satellite zenith angle for two years (September 2016 to August 2018) are used. The corresponding TPW is prepared by integrating the water vapor profiles from InterimEuropean Centre for Medium-Range Weather Forecasts Re-Analysis data (ERA-Interim). The algorithm performances are assessed using the ERA-Interim and radiosonde observations (RAOB) as the reference data. The results show that the DNN model performs better than RF and XGB with a correlation coefficient of 0.96, a mean bias of 0.90 mm, and a root mean square error (RMSE) of 4.65 mm when compared to the ERA-Interim. Similarly, DNN results in a correlation coefficient of 0.95, a mean bias of 1.25 mm, and an RMSE of 5.03 mm when compared to RAOB. Contributing variables to retrieve the TPW in each model and the spatial and temporal analysis of the retrieved TPW are carefully examined and discussed.

Funder

Korea Meteorological Administration

Ministry of Interior and Safety, South Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3