A Wavelet Transform-Based Neural Network Denoising Algorithm for Mobile Phonocardiography

Author:

Gradolewski Dawid,Magenes GiovanniORCID,Johansson Sven,Kulesza Wlodek

Abstract

Cardiovascular pathologies cause 23.5% of human deaths, worldwide. An auto-diagnostic system monitoring heart activity, which can identify the early symptoms of cardiac illnesses, might reduce the death rate caused by these problems. Phonocardiography (PCG) is one of the possible techniques able to detect heart problems. Nevertheless, acoustic signal enhancement is required since it is exposed to various disturbances coming from different sources. The most common denoising enhancement is based on the Wavelet Transform (WT). However, the WT is highly susceptible to variations in the noise frequency distribution. This paper proposes a new adaptive denoising algorithm, which combines WT and Time Delay Neural Networks (TDNN). The acquired signal is decomposed by means of the WT using the coif five-wavelet basis at the tenth decomposition level and then provided as input to the TDNN. Besides the advantage of adaptive thresholding, the reason for using TDNNs is their capacity of estimating the Inverse Wavelet Transform (IWT). The best parameters of the TDNN were found for a NN consisting of 25 neurons in the first and 15 in the second layer and the delay block of 12 samples. The method was evaluated on several pathological heart sounds and on signals recorded in a noisy environment. The performance of the developed system with respect to other wavelet-based denoising approaches was validated by the online questionnaire.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3