Wiener Complexity versus the Eccentric Complexity

Author:

Knor MartinORCID,Škrekovski RisteORCID

Abstract

Let wG(u) be the sum of distances from u to all the other vertices of G. The Wiener complexity, CW(G), is the number of different values of wG(u) in G, and the eccentric complexity, Cec(G), is the number of different eccentricities in G. In this paper, we prove that for every integer c there are infinitely many graphs G such that CW(G)−Cec(G)=c. Moreover, we prove this statement using graphs with the smallest possible cyclomatic number. That is, if c≥0 we prove this statement using trees, and if c<0 we prove it using unicyclic graphs. Further, we prove that Cec(G)≤2CW(G)−1 if G is a unicyclic graph. In our proofs we use that the function wG(u) is convex on paths consisting of bridges. This property also promptly implies the already known bound for trees Cec(G)≤CW(G). Finally, we answer in positive an open question by finding infinitely many graphs G with diameter 3 such that Cec(G)<CW(G).

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference8 articles.

1. On the Eccentric Complexity of Graphs

2. Complexity of topological indices: The case of connective eccentric index;Alizadeh;MATCH Commun. Math. Comput. Chem.,2016

3. Wiener dimension: Fundamental properties and (5,0)-nanotubical fullerenes;Alizadeh;MATCH Commun. Math. Comput. Chem.,2014

4. On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs

5. Wiener dimension of spiders, k-ary trees and binomial trees;Jemilet;Int. J. Pure Appl. Math.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3