Smart Machinery Monitoring System with Reduced Information Transmission and Fault Prediction Methods Using Industrial Internet of Things

Author:

Tsai Ming-Fong,Chu Yen-Ching,Li Min-Hao,Chen Lien-WuORCID

Abstract

A monitoring system for smart machinery has been considered to be one of the most important goals in recent enterprises. This monitoring system will encounter huge difficulties, such as more data uploaded by smart machines, and the available internet bandwidth will influence the transmission speed of data and the reliability of the equipment monitoring platform. This paper proposes reducing the periodical information that has been uploaded to the monitoring platform by setting an upload event through the traits of production data from machines. The proposed methods reduce bandwidth and power consumption. The monitoring information is reconstructed by the proposed methods, so history data will not reduce storage in the cloud server database. In order to reduce the halt time caused by machine error, the proposed system uses machine-learning technology to model the operating status of machinery for fault prediction. In the experimental results, the smart machinery monitoring system using the Industrial Internet of Things reduces the volume of information uploaded by 54.57% and obtains a 98% prediction accuracy.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3