Changepoint in Error-Prone Relations

Author:

Pešta MichalORCID

Abstract

Linear relations, containing measurement errors in input and output data, are considered. Parameters of these so-called errors-in-variables models can change at some unknown moment. The aim is to test whether such an unknown change has occurred or not. For instance, detecting a change in trend for a randomly spaced time series is a special case of the investigated framework. The designed changepoint tests are shown to be consistent and involve neither nuisance parameters nor tuning constants, which makes the testing procedures effortlessly applicable. A changepoint estimator is also introduced and its consistency is proved. A boundary issue is avoided, meaning that the changepoint can be detected when being close to the extremities of the observation regime. As a theoretical basis for the developed methods, a weak invariance principle for the smallest singular value of the data matrix is provided, assuming weakly dependent and non-stationary errors. The results are presented in a simulation study, which demonstrates computational efficiency of the techniques. The completely data-driven tests are illustrated through problems coming from calibration and insurance; however, the methodology can be applied to other areas such as clinical measurements, dietary assessment, computational psychometrics, or environmental toxicology as manifested in the paper.

Funder

Grantová Agentura České Republiky

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference63 articles.

1. Estimation in a Multivariate "Errors in Variables" Regression Model: Large Sample Results

2. Measurement Error Models;Fuller,1987

3. The Total Least Squares Problem: Computational Aspects and Analysis;Van Huffel,1991

4. Measurement Error in Nonlinear Models: A Modern Perspective;Carroll,2006

5. Measurement Error: Models, Methods, and Applications;Buonaccorsi,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bootstrapping Not Independent and Not Identically Distributed Data;Mathematics;2022-12-09

2. Infinitely stochastic micro reserving;Insurance: Mathematics and Economics;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3