Defocused Image Deep Learning Designed for Wavefront Reconstruction in Tomographic Pupil Image Sensors

Author:

Suárez Gómez Sergio Luis,García Riesgo Francisco,González Gutiérrez CarlosORCID,Rodríguez Ramos Luis Fernando,Santos Jesús DanielORCID

Abstract

Mathematical modelling methods have several limitations when addressing complex physics whose calculations require considerable amount of time. This is the case of adaptive optics, a series of techniques used to process and improve the resolution of astronomical images acquired from ground-based telescopes due to the aberrations introduced by the atmosphere. Usually, with adaptive optics the wavefront is measured with sensors and then reconstructed and corrected by means of a deformable mirror. An improvement in the reconstruction of the wavefront is presented in this work, using convolutional neural networks (CNN) for data obtained from the Tomographic Pupil Image Wavefront Sensor (TPI-WFS). The TPI-WFS is a modified curvature sensor, designed for measuring atmospheric turbulences with defocused wavefront images. CNNs are well-known techniques for its capacity to model and predict complex systems. The results obtained from the presented reconstructor, named Convolutional Neural Networks in Defocused Pupil Images (CRONOS), are compared with the results of Wave-Front Reconstruction (WFR) software, initially developed for the TPI-WFS measurements, based on the least-squares fit. The performance of both reconstruction techniques is tested for 153 Zernike modes and with simulated noise. In general, CRONOS showed better performance than the reconstruction from WFR in most of the turbulent profiles, with significant improvements found for the most turbulent profiles; overall, obtaining around 7% of improvements in wavefront restoration, and 18% of improvements in Strehl.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3